Today, my paper on the Cultural Brain Hypothesis (CBH) and Cumulative Cultural Brain Hypothesis (CCBH) with Michael Doebeli, Maciej Chudek, and Joe Henrich was published in PLOS Computational Biology.
The Cultural Brain Hypothesis is a more general theory for brain evolution across species that unifies more specific explanations around environmental hypotheses and social brain hypotheses. The theory is formalized using an analytical and a computational model.
The CBH shows how the environment constrains evolution and how social factors are necessary infrastructure for more social learning species. It predicts different relationships between brain size, sociality, mating structure, the length of the juvenile period, innovation and knowledge, and social learning strategies.
According to the CBH, the environment constrains brain evolution rather than driving it – brain size is affected by the environment, because you need to have enough calories to feed your brain. But your ability to derive calories from what’s available (or potentially available) is driven by how smart you are – how much information you have. All else being equal, a lush rainforest will have larger brains than an arid desert.
The model specifies two pathways for acquiring this information, both of which can lead to bigger brains – asocial learning and social learning (or some combination of these). If you take the asocial path, you’re reliant on your own intelligence and you don’t have to worry about the social infrastructure. Asocial brains can be larger depending on how easy it is to learn things asocially, but they’ll tend to be smaller than social brains on average.
If you take the social path, it requires all kinds of social infrastructure – more tight-knit and perhaps larger group to learn from, a longer juvenile period, more care during that longer juvenile period, tolerance for other members of the group, an ability and proclivity to learn from other members of the group, and so on. Culture is socially transmitted information, which is a cheaper and more efficient way to get information than asocial learning, but does require all these social factors.
The theory links together ecology and social factors and shows how constraints for learning culture and information in general are what drive the expansion in brain evolution (rather than adaptations to the environment or social factors directly). The model allows us to make sense of a lot of puzzling relationships between brain size, sociality, mating structures, juvenile period, innovation, knowledge, and social learning strategies, and other social and environmental features. We’ve tested some of these relationships among cetaceans and in this paper, we compare it to tests in primates. Unfortunately, most of the focus has been on the more interesting more social learning species (you publish papers by showing how animals and babies are smart and human adults are dumb, not vice versa). The next step is to try to test the predictions for more asocial taxa.
The Cumulative Cultural Brain Hypothesis (CCBH)
The CCBH is a narrow set of parameters that can lead to a take off where information and technology start accumulating faster and faster forcing brains and social factors to evolve to keep up. In our species, our brains continue to grow to the point where we end having trouble giving birth to our babies (larger heads are more difficult to birth), we give birth to our babies prematurely relative to other animals (compare a human infant to a gazelle ready to run). This leads to strategies to take care of our now helpless infants, like forcing fathers to pay for childcare or stick around, and normatively controlling female sexuality so dad knows it’s his. We do other things to keep up. We divide up the information, leading to a division of information and a division of labor (specialization), which can lead to a collective brain. We expand our juvenile period, so we spend longer in childhood, and have an extraordinarily long period of adolescence (the time between when you can reproduce and when you actually do), just to keep learning the ever growing body of information needed to outcompete other members f our group. This last strategy is now at the point we’re hitting a new biological limit – not in the size of the brains we can birth, but in our ability to reproduce at a later age. (I wrote a bit about this for MoneySupermarket in reference to why it takes longer to buy a house).
According to the CCBH, this take off requires:
- High transmission fidelity. This could include more cognitive abilities like gaze tracking, shared intentionality, theory of mind, the ability to recognize, distinguish, and imitate potential models, but also more social factors like social tolerance, and ever more sophisticated methods of teaching (consider how long you’ve probably spent in formal education plus internships or low paid entry-level jobs).
- Low reproductive skew. Consistent with a “monogamish” or cooperative breeding structure that suppresses reproductive skew. A cooperative breeding environment would have also been ideal to allow for an easy transition to oblique learning. Chimps learn from their mom, but having multiple moms and dads means you can focus on who’s better rather than who you have access to.
- Smart ancestors. There is an interaction between transmission fidelity and efficient individual learning. Social learners benefit from smart asocial learners who’s knowledge they can exploit.
- Rich ecology. There have to be potential returns in the environment. That is, there are large game or good sources of calories, only requiring the knowledge to acquire them.
There’s more in the paper, which I encourage you to read.